Solving Linear Partial Differential Equations via Semidefinite Optimization
نویسندگان
چکیده
Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this thesis a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on both linear and nonlinear functionals defined on solutions of linear partial differential equations. We apply the proposed methods to examples of PDEs in one and two dimensions with very encouraging results. We also provide computational evidence that the semidefinite constraints are critically important in improving the quality of the bounds, that is without them the bounds are weak. Thesis Supervisor: Dimitris Bertsimas Title: Boeing Professor of Operations Research
منابع مشابه
Exact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملBounds on linear PDEs via semidefinite optimization
Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this paper a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on linear functionals defined on solutions of linear partial differential equations. We apply the proposed method to examples of PDEs in one and two dimensions, with very enc...
متن کاملAnalysis and Control of Partial Differential Equations using Occupation Measures
Context This work is in the line of research with the following issue: how to develop new convex optimization techniques based on semidefinite programming (SDP) and real algebraic geometry to solve optimal control problems (OCP) in a nonlinear setting. Recently, several research efforts allowed to solve numerically certain optimal control problems with polynomial data. The general idea is to re...
متن کامل